Bayesian Optimization for Materials Science

Nonfiction, Science & Nature, Technology, Material Science, Mathematics, Statistics
Cover of the book Bayesian Optimization for Materials Science by Daniel Packwood, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Daniel Packwood ISBN: 9789811067815
Publisher: Springer Singapore Publication: October 4, 2017
Imprint: Springer Language: English
Author: Daniel Packwood
ISBN: 9789811067815
Publisher: Springer Singapore
Publication: October 4, 2017
Imprint: Springer
Language: English

This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science.

Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While research in these directions has been reported in high-profile journals, until now there has been no textbook aimed specifically at materials scientists who wish to incorporate Bayesian optimization into their own research. This book will be accessible to researchers and students in materials science who have a basic background in calculus and linear algebra.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science.

Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While research in these directions has been reported in high-profile journals, until now there has been no textbook aimed specifically at materials scientists who wish to incorporate Bayesian optimization into their own research. This book will be accessible to researchers and students in materials science who have a basic background in calculus and linear algebra.

More books from Springer Singapore

Cover of the book Reflective Theory and Practice in Teacher Education by Daniel Packwood
Cover of the book Sensors and Image Processing by Daniel Packwood
Cover of the book Proceedings of GeoShanghai 2018 International Conference: Transportation Geotechnics and Pavement Engineering by Daniel Packwood
Cover of the book Industry Interactive Innovations in Science, Engineering and Technology by Daniel Packwood
Cover of the book Mobile Learning in Higher Education in the Asia-Pacific Region by Daniel Packwood
Cover of the book Catalytic and Process Study of the Selective Hydrogenation of Acetylene and 1,3-Butadiene by Daniel Packwood
Cover of the book Research Outline for China’s Cultural Soft Power by Daniel Packwood
Cover of the book Advances in Machine Learning and Data Science by Daniel Packwood
Cover of the book Multidisciplinary Perspectives on Play from Birth and Beyond by Daniel Packwood
Cover of the book Japanese Contractors in Overseas Markets by Daniel Packwood
Cover of the book South Asian Diaspora Narratives by Daniel Packwood
Cover of the book Musical Instruments in the 21st Century by Daniel Packwood
Cover of the book Groundwater by Daniel Packwood
Cover of the book Digital TV and Multimedia Communication by Daniel Packwood
Cover of the book Computational Electromagnetics—Retrospective and Outlook by Daniel Packwood
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy