Deep Learning for Biometrics

Nonfiction, Computers, Advanced Computing, Engineering, Computer Vision, Artificial Intelligence, General Computing
Cover of the book Deep Learning for Biometrics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319616575
Publisher: Springer International Publishing Publication: August 1, 2017
Imprint: Springer Language: English
Author:
ISBN: 9783319616575
Publisher: Springer International Publishing
Publication: August 1, 2017
Imprint: Springer
Language: English

This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined.

Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits  deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches for gesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories.

Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined.

Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits  deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches for gesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories.

Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning.

More books from Springer International Publishing

Cover of the book The Boy Detective in Early British Children’s Literature by
Cover of the book Business Process Crowdsourcing by
Cover of the book The Destruction of Cultural Property as a Weapon of War by
Cover of the book Film/Music Analysis by
Cover of the book Clinical Nuclear Medicine in Pediatrics by
Cover of the book International Perspectives on Cyberbullying by
Cover of the book Relativity for Everyone by
Cover of the book English for Academic Correspondence by
Cover of the book Cloud Computing and Security by
Cover of the book Arts-based Methods and Organizational Learning by
Cover of the book Competencies and (Global) Talent Management by
Cover of the book Dupuytren Disease and Related Diseases - The Cutting Edge by
Cover of the book Introduction to Time-Delay Systems by
Cover of the book Global to Local Curriculum Policy Processes by
Cover of the book Open Data in Southeast Asia by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy