Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostructures and Their Polymer Composites

Nonfiction, Science & Nature, Science, Chemistry, Physical & Theoretical, Technology, Material Science
Cover of the book Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostructures and Their Polymer Composites by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780323480628
Publisher: Elsevier Science Publication: March 23, 2018
Imprint: Elsevier Language: English
Author:
ISBN: 9780323480628
Publisher: Elsevier Science
Publication: March 23, 2018
Imprint: Elsevier
Language: English

Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostructures and Their Polymer Composite focuses on the recent observations and predictions regarding the size-dependent mechanical properties, material properties and processing issues of carbon nanotubes (CNTs) and other nanostructured materials. The book takes various approaches, including dedicated characterization methods, theoretical approaches and computer simulations, providing a detailed examination of the fundamental mechanisms governing the deviations of the properties of CNTs and other nanostructured materials. The book explores their applications in materials science, mechanics, engineering, chemistry and physics due to their unique and appealing properties.

The use of such materials is, however, still largely limited due to the difficulty in tuning their properties and morphological and structural features.

  • Presents a thorough discussion on how to effectively model the properties of carbon nanotubes and their polymer nanocomposites
  • Includes a size-dependent analysis of properties and multiscale modeling
  • Outlines the fundamentals and procedures of computational modeling as it is applied to carbon nanotubes and other nanomaterials
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Experimental Characterization, Predictive Mechanical and Thermal Modeling of Nanostructures and Their Polymer Composite focuses on the recent observations and predictions regarding the size-dependent mechanical properties, material properties and processing issues of carbon nanotubes (CNTs) and other nanostructured materials. The book takes various approaches, including dedicated characterization methods, theoretical approaches and computer simulations, providing a detailed examination of the fundamental mechanisms governing the deviations of the properties of CNTs and other nanostructured materials. The book explores their applications in materials science, mechanics, engineering, chemistry and physics due to their unique and appealing properties.

The use of such materials is, however, still largely limited due to the difficulty in tuning their properties and morphological and structural features.

More books from Elsevier Science

Cover of the book Deuterium by
Cover of the book Supercritical Fluid Technology for Energy and Environmental Applications by
Cover of the book The Alkaloids by
Cover of the book Isotope Labeling of Biomolecules – Applications by
Cover of the book Systems Biology of Bacteria by
Cover of the book Advances in Experimental Social Psychology by
Cover of the book Nanobiomaterials in Hard Tissue Engineering by
Cover of the book Leadership Lessons for Health Care Providers by
Cover of the book Improving the Fat Content of Foods by
Cover of the book 3D Printing in Medicine by
Cover of the book Unplugging the Classroom by
Cover of the book Handbook of Commercial Policy by
Cover of the book Sport and the Brain: The Science of Preparing, Enduring and Winning, Part A by
Cover of the book Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method by
Cover of the book Advanced District Heating and Cooling (DHC) Systems by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy