Fault Tolerant Architectures for Cryptography and Hardware Security

Nonfiction, Science & Nature, Technology, Electronics, Circuits, Computers, Networking & Communications, Computer Security
Cover of the book Fault Tolerant Architectures for Cryptography and Hardware Security by , Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789811013874
Publisher: Springer Singapore Publication: March 29, 2018
Imprint: Springer Language: English
Author:
ISBN: 9789811013874
Publisher: Springer Singapore
Publication: March 29, 2018
Imprint: Springer
Language: English

This book uses motivating examples and real-life attack scenarios to introduce readers to the general concept of fault attacks in cryptography. It offers insights into how the fault tolerance theories developed in the book can actually be implemented, with a particular focus on a wide spectrum of fault models and practical fault injection techniques, ranging from simple, low-cost techniques to high-end equipment-based methods.  It then individually examines fault attack vulnerabilities in symmetric, asymmetric and authenticated encryption systems. This is followed by extensive coverage of countermeasure techniques and fault tolerant architectures that attempt to thwart such vulnerabilities. Lastly, it presents a case study of a comprehensive FPGA-based fault tolerant architecture for AES-128, which brings together of a number of the fault tolerance techniques presented. It concludes with a discussion on how fault tolerance can be combined with side channel security to achieve protection against implementation-based attacks. The text is supported by illustrative diagrams, algorithms, tables and diagrams presenting real-world experimental results.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book uses motivating examples and real-life attack scenarios to introduce readers to the general concept of fault attacks in cryptography. It offers insights into how the fault tolerance theories developed in the book can actually be implemented, with a particular focus on a wide spectrum of fault models and practical fault injection techniques, ranging from simple, low-cost techniques to high-end equipment-based methods.  It then individually examines fault attack vulnerabilities in symmetric, asymmetric and authenticated encryption systems. This is followed by extensive coverage of countermeasure techniques and fault tolerant architectures that attempt to thwart such vulnerabilities. Lastly, it presents a case study of a comprehensive FPGA-based fault tolerant architecture for AES-128, which brings together of a number of the fault tolerance techniques presented. It concludes with a discussion on how fault tolerance can be combined with side channel security to achieve protection against implementation-based attacks. The text is supported by illustrative diagrams, algorithms, tables and diagrams presenting real-world experimental results.

More books from Springer Singapore

Cover of the book Success in Higher Education by
Cover of the book Industrialization and Challenges in Asia by
Cover of the book Clusterbean: Physiology, Genetics and Cultivation by
Cover of the book Observed Climate Variability and Change over the Indian Region by
Cover of the book The Self-organizing University by
Cover of the book Unique Urbanity? by
Cover of the book Laugh out Loud: A User’s Guide to Workplace Humor by
Cover of the book Self-similarity in Walsh Functions and in the Farfield Diffraction Patterns of Radial Walsh Filters by
Cover of the book Single-Frequency Fiber Lasers by
Cover of the book Implementing Cross-Culture Pedagogies by
Cover of the book Understanding Markov Chains by
Cover of the book Social Life Cycle Assessment by
Cover of the book Electromagnetic Field Theories for Engineering by
Cover of the book Role of Rhizospheric Microbes in Soil by
Cover of the book Hong Kong Culture and Society in the New Millennium by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy