Lipid Hydroperoxide-Derived Modification of Biomolecules

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Health & Well Being, Medical, Specialties, Oncology
Cover of the book Lipid Hydroperoxide-Derived Modification of Biomolecules by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789400779204
Publisher: Springer Netherlands Publication: December 28, 2013
Imprint: Springer Language: English
Author:
ISBN: 9789400779204
Publisher: Springer Netherlands
Publication: December 28, 2013
Imprint: Springer
Language: English

Lipid peroxidation is an important cellular process which can lead to detrimental effects if it is not regulated efficiently. Lipid hydroperoxide is formed in an initial step of lipid peroxidation. Lipid hydroperoxide is also known as a potential source of singlet oxygen. Harmful aldehydes are formed when the lipid hydroperoxide is degraded. The formed aldehyde has high reactivity against thiol or amine moieties. Therefore, it could act as a signaling molecule, which might induce the changing of gears inside a cell. Recent studies have shown that lipid hydroperoxide or a slightly modified product of the lipid hydroperoxide reacts with biomolecules such as proteins and aminophospholipids, which leads to formation of amide-type adducts. Amide-type adducts could be one of markers for oxidative stress and could also be an important player in some diseases. In this book, the chemistry and biochemistry of lipid hydroperoxide along with their conjugates with biomolecules are described.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Lipid peroxidation is an important cellular process which can lead to detrimental effects if it is not regulated efficiently. Lipid hydroperoxide is formed in an initial step of lipid peroxidation. Lipid hydroperoxide is also known as a potential source of singlet oxygen. Harmful aldehydes are formed when the lipid hydroperoxide is degraded. The formed aldehyde has high reactivity against thiol or amine moieties. Therefore, it could act as a signaling molecule, which might induce the changing of gears inside a cell. Recent studies have shown that lipid hydroperoxide or a slightly modified product of the lipid hydroperoxide reacts with biomolecules such as proteins and aminophospholipids, which leads to formation of amide-type adducts. Amide-type adducts could be one of markers for oxidative stress and could also be an important player in some diseases. In this book, the chemistry and biochemistry of lipid hydroperoxide along with their conjugates with biomolecules are described.

More books from Springer Netherlands

Cover of the book Environmental Change in Lesotho by
Cover of the book The Bedrock of Opinion by
Cover of the book From Phenomenology to Thought, Errancy, and Desire by
Cover of the book Mathematical Knowledge in Teaching by
Cover of the book Politics and Economics of Tropical High Forest Management by
Cover of the book Processing and Use of Organic Sludge and Liquid Agricultural Wastes by
Cover of the book Physics and Metaphysics of Music and Essays on the Philosophy of Mathematics by
Cover of the book The Royal Dutch Theatre at the Hague 1804–1876 by
Cover of the book Key Demographics in Retirement Risk Management by
Cover of the book Gendered Choices by
Cover of the book Geotechnical Predictions and Practice in Dealing with Geohazards by
Cover of the book Perspectives on Educational Quality by
Cover of the book The Arts in Children's Lives by
Cover of the book Uncommon Infections and Special Topics by
Cover of the book Industrial Membrane Separation Technology by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy