Locally Convex Spaces

Nonfiction, Science & Nature, Mathematics, Functional Analysis, Group Theory
Cover of the book Locally Convex Spaces by M. Scott Osborne, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: M. Scott Osborne ISBN: 9783319020457
Publisher: Springer International Publishing Publication: November 8, 2013
Imprint: Springer Language: English
Author: M. Scott Osborne
ISBN: 9783319020457
Publisher: Springer International Publishing
Publication: November 8, 2013
Imprint: Springer
Language: English

For most practicing analysts who use functional analysis, the restriction to Banach spaces seen in most real analysis graduate texts is not enough for their research. This graduate text, while focusing on locally convex topological vector spaces, is intended to cover most of the general theory needed for application to other areas of analysis. Normed vector spaces, Banach spaces, and Hilbert spaces are all examples of classes of locally convex spaces, which is why this is an important topic in functional analysis.

While this graduate text focuses on what is needed for applications, it also shows the beauty of the subject and motivates the reader with exercises of varying difficulty. Key topics covered include point set topology, topological vector spaces, the Hahn–Banach theorem, seminorms and Fréchet spaces, uniform boundedness, and dual spaces. The prerequisite for this text is the Banach space theory typically taught in a beginning graduate real analysis course.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

For most practicing analysts who use functional analysis, the restriction to Banach spaces seen in most real analysis graduate texts is not enough for their research. This graduate text, while focusing on locally convex topological vector spaces, is intended to cover most of the general theory needed for application to other areas of analysis. Normed vector spaces, Banach spaces, and Hilbert spaces are all examples of classes of locally convex spaces, which is why this is an important topic in functional analysis.

While this graduate text focuses on what is needed for applications, it also shows the beauty of the subject and motivates the reader with exercises of varying difficulty. Key topics covered include point set topology, topological vector spaces, the Hahn–Banach theorem, seminorms and Fréchet spaces, uniform boundedness, and dual spaces. The prerequisite for this text is the Banach space theory typically taught in a beginning graduate real analysis course.

More books from Springer International Publishing

Cover of the book WALCOM: Algorithms and Computation by M. Scott Osborne
Cover of the book Acoustic Cavitation and Bubble Dynamics by M. Scott Osborne
Cover of the book Vegetation of Central Asia and Environs by M. Scott Osborne
Cover of the book Designing Thriving Systems by M. Scott Osborne
Cover of the book The Future of Thermal Comfort in an Energy- Constrained World by M. Scott Osborne
Cover of the book Rules for Scientific Research in Economics by M. Scott Osborne
Cover of the book Molecularly Imprinted Polymers in Biotechnology by M. Scott Osborne
Cover of the book Post-Tsunami Hazard by M. Scott Osborne
Cover of the book War and Peace in Africa’s Great Lakes Region by M. Scott Osborne
Cover of the book Machine Learning and Data Mining in Pattern Recognition by M. Scott Osborne
Cover of the book Liminality, Hybridity, and American Women's Literature by M. Scott Osborne
Cover of the book Applications of Conceptual Spaces by M. Scott Osborne
Cover of the book In Defense of Deflation by M. Scott Osborne
Cover of the book Structural Health Monitoring and Damage Detection, Volume 7 by M. Scott Osborne
Cover of the book Peritoneal Surface Malignancies by M. Scott Osborne
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy