Milchtüte und Konservendose

Nonfiction, Science & Nature, Mathematics, Geometry
Cover of the book Milchtüte und Konservendose by Simone Effenberk, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Simone Effenberk ISBN: 9783638230766
Publisher: GRIN Verlag Publication: November 20, 2003
Imprint: GRIN Verlag Language: German
Author: Simone Effenberk
ISBN: 9783638230766
Publisher: GRIN Verlag
Publication: November 20, 2003
Imprint: GRIN Verlag
Language: German

Studienarbeit aus dem Jahr 2003 im Fachbereich Mathematik - Geometrie, Note: 2, , Veranstaltung: Geometrie in Natur, Technik und Kunst, Sprache: Deutsch, Abstract: Es gibt zwei verschiedene Arten von Milchtüten. Die erste hat einen quadratischen Boden und ist relativ hoch. Die zweite hat einen rechteckigen Boden und eine etwas größere Grundfläche. Trennt man die Tüte mit quadratischem Boden an den Kleberändern auf, entsteht ein Rechteck mit Kleberändern an dreien der vier Außenseiten. Die Kleberänder sind jeweils 0,6cm breit. Die Höhe der Tüte beträgt 19,7cm und die Breite 7,1cm. Ober- und unterhalb der rechteckigen Seite der Tüte und an zwei halben Seiten rechts und links liegen Streifen der Höhe 1/2·a über die volle Breite. Eine Tüte mit den genannten Maßen hätte ein Volumen von V=a²·h=(7,1cm)²·19.7cm=993,077cm³. Da die gefüllte Tüte leicht bauchig ist, passen auf jeden Fall 1l = 1000cm³ hinein. Es bleibt sogar noch etwas Luft, damit die Flüssigkeit, in dem Fall die Milch nicht gleich beim Öffnen herausschwappt. heißt mit minimalem Papierverbrauch produziert. Minima und Maxima einer Funktion kann man mit der Nullstelle der ersten Ableitung berechnen. Daraus ergibt sich folgende Rechnung: Man stellt eine Funktion für den Materialverbrauch in Abhängigkeit von a und h auf. M(a,h)='Höhe'·'Breite'= (h+2·a/2+2·0,6)·(4a+0,6) Das Volumen (1Liter = 1000cm³) steht fest, das heißt man kann a²·h = 1000 als Nebenbedingung aufstellen und diese in die Funktion einsetzen. Dadurch erhält man eine Funktion, die nur noch von a abhängig ist. [...]

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Studienarbeit aus dem Jahr 2003 im Fachbereich Mathematik - Geometrie, Note: 2, , Veranstaltung: Geometrie in Natur, Technik und Kunst, Sprache: Deutsch, Abstract: Es gibt zwei verschiedene Arten von Milchtüten. Die erste hat einen quadratischen Boden und ist relativ hoch. Die zweite hat einen rechteckigen Boden und eine etwas größere Grundfläche. Trennt man die Tüte mit quadratischem Boden an den Kleberändern auf, entsteht ein Rechteck mit Kleberändern an dreien der vier Außenseiten. Die Kleberänder sind jeweils 0,6cm breit. Die Höhe der Tüte beträgt 19,7cm und die Breite 7,1cm. Ober- und unterhalb der rechteckigen Seite der Tüte und an zwei halben Seiten rechts und links liegen Streifen der Höhe 1/2·a über die volle Breite. Eine Tüte mit den genannten Maßen hätte ein Volumen von V=a²·h=(7,1cm)²·19.7cm=993,077cm³. Da die gefüllte Tüte leicht bauchig ist, passen auf jeden Fall 1l = 1000cm³ hinein. Es bleibt sogar noch etwas Luft, damit die Flüssigkeit, in dem Fall die Milch nicht gleich beim Öffnen herausschwappt. heißt mit minimalem Papierverbrauch produziert. Minima und Maxima einer Funktion kann man mit der Nullstelle der ersten Ableitung berechnen. Daraus ergibt sich folgende Rechnung: Man stellt eine Funktion für den Materialverbrauch in Abhängigkeit von a und h auf. M(a,h)='Höhe'·'Breite'= (h+2·a/2+2·0,6)·(4a+0,6) Das Volumen (1Liter = 1000cm³) steht fest, das heißt man kann a²·h = 1000 als Nebenbedingung aufstellen und diese in die Funktion einsetzen. Dadurch erhält man eine Funktion, die nur noch von a abhängig ist. [...]

More books from GRIN Verlag

Cover of the book Liebe und Gewalt in Heinrich von Kleists 'Penthesilea' by Simone Effenberk
Cover of the book Bronckarts 'typologie énonciative' und Brinkers Texttypologie by Simone Effenberk
Cover of the book Aspekte einer sprachanalytischen Kritik für die Untersuchung der Konzeption von Analytizität bei Immanuel Kant by Simone Effenberk
Cover of the book Wie wird in den USA der Mythos von Gut und Böse zum Erhalt der nationalstaatlichen Identität und zum Aufbau von Feindbildern genutzt? by Simone Effenberk
Cover of the book Sternbilder und Sterndaten in den Fasti Ovids by Simone Effenberk
Cover of the book The Importance of the Marabar Caves for Adela Quested and Mrs Moore in Edward Morgan Forster's 'A Passage to India' by Simone Effenberk
Cover of the book Karin Knorr-Cetina: Soziologie der Finanzmärkte by Simone Effenberk
Cover of the book FreiRaum - Zentrum für Kinder und Eltern by Simone Effenberk
Cover of the book Legasthenie. Symptome, Ursachen, Diagnose und Behandlung by Simone Effenberk
Cover of the book Ablagesystem im Lieferscheinwesen (Unterweisung Groß- und Außenhandelskaufmann / -kauffrau) by Simone Effenberk
Cover of the book An Analysis of German Expressionism in Relation to the Emerging Hollywood Style by Simone Effenberk
Cover of the book Die Durchführung unionsweiter Bankenstresstests durch die EBA vor dem Hintergrund des neuen europäischen Rahmens zur Wahrung der Finanzstabilität by Simone Effenberk
Cover of the book Important Leadership Theories in the Realm of Management Sciences by Simone Effenberk
Cover of the book Strategisches Umweltmanagement by Simone Effenberk
Cover of the book Der Nahostkonflikt - Ein Wendepunkt im Friedensprozess nach dem Tod von Jassir Arafat by Simone Effenberk
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy