Model-Based Processing for Underwater Acoustic Arrays

Nonfiction, Science & Nature, Science, Physics, Mechanics, Technology, Electronics
Cover of the book Model-Based Processing for Underwater Acoustic Arrays by Edmund J. Sullivan, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Edmund J. Sullivan ISBN: 9783319175577
Publisher: Springer International Publishing Publication: May 14, 2015
Imprint: Springer Language: English
Author: Edmund J. Sullivan
ISBN: 9783319175577
Publisher: Springer International Publishing
Publication: May 14, 2015
Imprint: Springer
Language: English

This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Thirdly, such a unification provides a formal means of quantifying the performance improvement. The term model-based will be strictly defined as the use of physics-based models as a means of introducing a priori information. This leads naturally to viewing the method as a Bayesian processor. Short expositions of estimation theory and acoustic array theory are presented, followed by a presentation of the Kalman filter in its recursive estimator form. Examples of applications to localization, bearing estimation, range estimation and model parameter estimation are provided along with experimental results verifying the method. The book is sufficiently self-contained to serve as a guide for the application of model-based array processing for the practicing engineer.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Thirdly, such a unification provides a formal means of quantifying the performance improvement. The term model-based will be strictly defined as the use of physics-based models as a means of introducing a priori information. This leads naturally to viewing the method as a Bayesian processor. Short expositions of estimation theory and acoustic array theory are presented, followed by a presentation of the Kalman filter in its recursive estimator form. Examples of applications to localization, bearing estimation, range estimation and model parameter estimation are provided along with experimental results verifying the method. The book is sufficiently self-contained to serve as a guide for the application of model-based array processing for the practicing engineer.

More books from Springer International Publishing

Cover of the book Hard Atheism and the Ethics of Desire by Edmund J. Sullivan
Cover of the book Developing Drug Products in an Aging Society by Edmund J. Sullivan
Cover of the book Architecture and Mathematics from Antiquity to the Future by Edmund J. Sullivan
Cover of the book Knowledge Creation in Public Administrations by Edmund J. Sullivan
Cover of the book Preschool Bilingual Education by Edmund J. Sullivan
Cover of the book Handbook of Genetic Programming Applications by Edmund J. Sullivan
Cover of the book Intelligent Computing Theories and Methodologies by Edmund J. Sullivan
Cover of the book Proceedings of the Second International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’17) by Edmund J. Sullivan
Cover of the book School Leadership and Educational Change in Singapore by Edmund J. Sullivan
Cover of the book Birds as Useful Indicators of High Nature Value Farmlands by Edmund J. Sullivan
Cover of the book Supply Chain Finance and Blockchain Technology by Edmund J. Sullivan
Cover of the book International Conference on Security and Privacy in Communication Networks by Edmund J. Sullivan
Cover of the book European Yearbook of International Economic Law 2017 by Edmund J. Sullivan
Cover of the book The Contribution of the Postal and Delivery Sector by Edmund J. Sullivan
Cover of the book Simulation and Modeling Methodologies, Technologies and Applications by Edmund J. Sullivan
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy