Physical Models of Cell Motility

Nonfiction, Science & Nature, Science, Biological Sciences, Biophysics, Technology, Engineering
Cover of the book Physical Models of Cell Motility by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319244488
Publisher: Springer International Publishing Publication: December 16, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319244488
Publisher: Springer International Publishing
Publication: December 16, 2015
Imprint: Springer
Language: English

This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force generation and motility, an abundance of computational models have been proposed in recent years, from finite element to immerse interface methods and phase field approaches.This book is primarily written for physicists, mathematical biologists and biomedical engineers working in this rapidly expanding field, and ca

n serve as supplementary reading for advanced graduate courses in biophysics and mathematical biology. The e-book incorporates experimental and computer animations illustrating various aspects of cell movement.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force generation and motility, an abundance of computational models have been proposed in recent years, from finite element to immerse interface methods and phase field approaches.This book is primarily written for physicists, mathematical biologists and biomedical engineers working in this rapidly expanding field, and ca

n serve as supplementary reading for advanced graduate courses in biophysics and mathematical biology. The e-book incorporates experimental and computer animations illustrating various aspects of cell movement.

More books from Springer International Publishing

Cover of the book Teaching Postdramatic Theatre by
Cover of the book Functional Metagenomics: Tools and Applications by
Cover of the book Functional Biopolymers by
Cover of the book Infinite Regress Arguments by
Cover of the book Cognitive Informatics in Health and Biomedicine by
Cover of the book The Amazing Unity of the Universe by
Cover of the book Metabolic Influences on Risk for Tendon Disorders by
Cover of the book Hannah Arendt's Theory of Political Action by
Cover of the book Women’s Domestic Activity in the Romantic-Period Novel, 1770-1820 by
Cover of the book Modeling with Rules Using Semantic Knowledge Engineering by
Cover of the book Nature Policies and Landscape Policies by
Cover of the book MicroRNAs: Key Regulators of Oncogenesis by
Cover of the book International Adoption and Clinical Practice by
Cover of the book Politics and Quality of Life by
Cover of the book Gain-Cell Embedded DRAMs for Low-Power VLSI Systems-on-Chip by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy