Quantile Regression for Spatial Data

Business & Finance, Economics, Urban & Regional, Nonfiction, Social & Cultural Studies, Political Science, Politics, Economic Policy
Cover of the book Quantile Regression for Spatial Data by Daniel P. McMillen, Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Daniel P. McMillen ISBN: 9783642318153
Publisher: Springer Berlin Heidelberg Publication: August 1, 2012
Imprint: Springer Language: English
Author: Daniel P. McMillen
ISBN: 9783642318153
Publisher: Springer Berlin Heidelberg
Publication: August 1, 2012
Imprint: Springer
Language: English

Quantile regression analysis differs from more conventional regression models in its emphasis on distributions. Whereas standard regression procedures show how the expected value of the dependent variable responds to a change in an explanatory variable, quantile regressions imply predicted changes for the entire distribution of the dependent variable. Despite its advantages, quantile regression is still not commonly used in the analysis of spatial data. The objective of this book is to make quantile regression procedures more accessible for researchers working with spatial data sets. The emphasis is on interpretation of quantile regression results. A series of examples using both simulated and actual data sets shows how readily seemingly complex quantile regression results can be interpreted with sets of well-constructed graphs. Both parametric and nonparametric versions of spatial models are considered in detail.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Quantile regression analysis differs from more conventional regression models in its emphasis on distributions. Whereas standard regression procedures show how the expected value of the dependent variable responds to a change in an explanatory variable, quantile regressions imply predicted changes for the entire distribution of the dependent variable. Despite its advantages, quantile regression is still not commonly used in the analysis of spatial data. The objective of this book is to make quantile regression procedures more accessible for researchers working with spatial data sets. The emphasis is on interpretation of quantile regression results. A series of examples using both simulated and actual data sets shows how readily seemingly complex quantile regression results can be interpreted with sets of well-constructed graphs. Both parametric and nonparametric versions of spatial models are considered in detail.

More books from Springer Berlin Heidelberg

Cover of the book Mikroökonomik by Daniel P. McMillen
Cover of the book The Strategy Planning Process by Daniel P. McMillen
Cover of the book Copahue Volcano by Daniel P. McMillen
Cover of the book Some Current Concepts of Synaptic Organization by Daniel P. McMillen
Cover of the book The Law of Mass Action by Daniel P. McMillen
Cover of the book New State of MCDM in the 21st Century by Daniel P. McMillen
Cover of the book Investitionsgütereinkauf by Daniel P. McMillen
Cover of the book Plant Breeding for Biotic Stress Resistance by Daniel P. McMillen
Cover of the book The Economics of Epidemiology by Daniel P. McMillen
Cover of the book The Measurement of Verbal Information in Psychology and Education by Daniel P. McMillen
Cover of the book Sparking Signals by Daniel P. McMillen
Cover of the book Diffusion Dynamics of Energy-Efficient Renovations by Daniel P. McMillen
Cover of the book Road News from Tibet by Daniel P. McMillen
Cover of the book New Molecular Mechanisms of Estrogen Action and Their Impact on Future Perspectives in Estrogen Therapy by Daniel P. McMillen
Cover of the book JIMD Reports, Volume 22 by Daniel P. McMillen
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy