Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems

Business & Finance, Management & Leadership, Operations Research, Nonfiction, Science & Nature, Mathematics, Calculus
Cover of the book Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems by Alexander J. Zaslavski, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Alexander J. Zaslavski ISBN: 9783319080345
Publisher: Springer International Publishing Publication: August 20, 2014
Imprint: Springer Language: English
Author: Alexander J. Zaslavski
ISBN: 9783319080345
Publisher: Springer International Publishing
Publication: August 20, 2014
Imprint: Springer
Language: English

The structure of approximate solutions of autonomous discrete-time optimal control problems and individual turnpike results for optimal control problems without convexity (concavity) assumptions are examined in this book. In particular, the book focuses on the properties of approximate solutions which are independent of the length of the interval, for all sufficiently large intervals; these results apply to the so-called turnpike property of the optimal control problems. By encompassing the so-called turnpike property the approximate solutions of the problems are determined primarily by the objective function and are fundamentally independent of the choice of interval and endpoint conditions, except in regions close to the endpoints. This book also explores the turnpike phenomenon for two large classes of autonomous optimal control problems. It is illustrated that the turnpike phenomenon is stable for an optimal control problem if the corresponding infinite horizon optimal control problem possesses an asymptotic turnpike property. If an optimal control problem belonging to the first class possesses the turnpike property, then the turnpike is a singleton (unit set). The stability of the turnpike property under small perturbations of an objective function and of a constraint map is established. For the second class of problems where the turnpike phenomenon is not necessarily a singleton the stability of the turnpike property under small perturbations of an objective function is established. Containing solutions of difficult problems in optimal control and presenting new approaches, techniques and methods this book is of interest for mathematicians working in optimal control and the calculus of variations. It also can be useful in preparation courses for graduate students.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The structure of approximate solutions of autonomous discrete-time optimal control problems and individual turnpike results for optimal control problems without convexity (concavity) assumptions are examined in this book. In particular, the book focuses on the properties of approximate solutions which are independent of the length of the interval, for all sufficiently large intervals; these results apply to the so-called turnpike property of the optimal control problems. By encompassing the so-called turnpike property the approximate solutions of the problems are determined primarily by the objective function and are fundamentally independent of the choice of interval and endpoint conditions, except in regions close to the endpoints. This book also explores the turnpike phenomenon for two large classes of autonomous optimal control problems. It is illustrated that the turnpike phenomenon is stable for an optimal control problem if the corresponding infinite horizon optimal control problem possesses an asymptotic turnpike property. If an optimal control problem belonging to the first class possesses the turnpike property, then the turnpike is a singleton (unit set). The stability of the turnpike property under small perturbations of an objective function and of a constraint map is established. For the second class of problems where the turnpike phenomenon is not necessarily a singleton the stability of the turnpike property under small perturbations of an objective function is established. Containing solutions of difficult problems in optimal control and presenting new approaches, techniques and methods this book is of interest for mathematicians working in optimal control and the calculus of variations. It also can be useful in preparation courses for graduate students.

More books from Springer International Publishing

Cover of the book Complications in Acute Care Surgery by Alexander J. Zaslavski
Cover of the book Cartilage Regeneration by Alexander J. Zaslavski
Cover of the book Life History Evolution and Sociology by Alexander J. Zaslavski
Cover of the book Local Treatment of Inflammatory Joint Diseases by Alexander J. Zaslavski
Cover of the book Advances in Cryptology – EUROCRYPT 2019 by Alexander J. Zaslavski
Cover of the book Lesbian Activism in the (Post-)Yugoslav Space by Alexander J. Zaslavski
Cover of the book From Smart City to Smart Region by Alexander J. Zaslavski
Cover of the book Public Service Broadcasting and Media Systems in Troubled European Democracies by Alexander J. Zaslavski
Cover of the book Financial Dimensions of Marketing Decisions by Alexander J. Zaslavski
Cover of the book The Complementarity Regime of the International Criminal Court by Alexander J. Zaslavski
Cover of the book Dynamic Modeling, Empirical Macroeconomics, and Finance by Alexander J. Zaslavski
Cover of the book Nanotechnology, Governance, and Knowledge Networks in the Global South by Alexander J. Zaslavski
Cover of the book eCommerce and the Effects of Technology on Taxation by Alexander J. Zaslavski
Cover of the book Advances in Swarm Intelligence by Alexander J. Zaslavski
Cover of the book Marine Organisms as Model Systems in Biology and Medicine by Alexander J. Zaslavski
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy