Tau-p: a plane wave approach to the analysis of seismic data

Nonfiction, Science & Nature, Science, Earth Sciences, Geophysics, Geology
Cover of the book Tau-p: a plane wave approach to the analysis of seismic data by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789400908819
Publisher: Springer Netherlands Publication: December 6, 2012
Imprint: Springer Language: English
Author:
ISBN: 9789400908819
Publisher: Springer Netherlands
Publication: December 6, 2012
Imprint: Springer
Language: English

In exploration seismology, data are acquired at multiple source and receiver posi­ tions along a profile line. These data are subsequently processed and interpreted. The primary result of this process is a subsurface image of the exploration target. As part of this procedure, additional information is also obtained about the subsurface material properties, e.g., seismic velocities. The methods that are employed in the acquisition and processing of exploration seismic data are internally consistent. That is, principally near vertical incidence seismic waves are generated, recorded and subsequently imaged. The data processing methods commonly used are based upon a small angle of incidence approximation, thus making the imaging problem tractable for existing data processing technology. Although tremendously successful, the limitations of this method are generally recognized. Current and future exploration goals will likely require the use of additional seismic waves, i.e., both compressional and shear precritical and postcritical reflections and refractions. Also, in addition to making better use of seismic travel times, recent efforts to directly incorporate seismic amplitude variations show that the approach may lead to a better understanding of subsurface rock properties. In response to more demanding exploration goals, recent data acquisition techniques have improved significantly by increasing the spatial aperture and incorporating a large number of closely spaced receivers. The need for better subsurface resolution in depth and position has encouraged the use of 240, 512, and even 1024 recorded data channels with receiver separations of 5 to 25 m.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In exploration seismology, data are acquired at multiple source and receiver posi­ tions along a profile line. These data are subsequently processed and interpreted. The primary result of this process is a subsurface image of the exploration target. As part of this procedure, additional information is also obtained about the subsurface material properties, e.g., seismic velocities. The methods that are employed in the acquisition and processing of exploration seismic data are internally consistent. That is, principally near vertical incidence seismic waves are generated, recorded and subsequently imaged. The data processing methods commonly used are based upon a small angle of incidence approximation, thus making the imaging problem tractable for existing data processing technology. Although tremendously successful, the limitations of this method are generally recognized. Current and future exploration goals will likely require the use of additional seismic waves, i.e., both compressional and shear precritical and postcritical reflections and refractions. Also, in addition to making better use of seismic travel times, recent efforts to directly incorporate seismic amplitude variations show that the approach may lead to a better understanding of subsurface rock properties. In response to more demanding exploration goals, recent data acquisition techniques have improved significantly by increasing the spatial aperture and incorporating a large number of closely spaced receivers. The need for better subsurface resolution in depth and position has encouraged the use of 240, 512, and even 1024 recorded data channels with receiver separations of 5 to 25 m.

More books from Springer Netherlands

Cover of the book Glaciated Continental Margins by
Cover of the book Biosafety of Forest Transgenic Trees by
Cover of the book Indian Foreign Policy and the Border Dispute with China by
Cover of the book Developments of the Avian Embryo by
Cover of the book Computing Meaning by
Cover of the book Manipulation of Growth in Farm Animals by
Cover of the book Flow and the Foundations of Positive Psychology by
Cover of the book Coastal and Marine Geospatial Technologies by
Cover of the book Evaluating Corporate Training: Models and Issues by
Cover of the book Pipelined ADC Design and Enhancement Techniques by
Cover of the book Integrated Pest Management by
Cover of the book Aquatic Invasions in the Black, Caspian, and Mediterranean Seas by
Cover of the book Stem Cells and Cancer Stem Cells,Volume 3 by
Cover of the book Fifth International Visual Field Symposium by
Cover of the book Educational Research with Our Youngest by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy