Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks

Nonfiction, Computers, Database Management, Information Storage & Retrievel, General Computing
Cover of the book Visual and Text Sentiment Analysis through Hierarchical Deep Learning Networks by Arindam Chaudhuri, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Arindam Chaudhuri ISBN: 9789811374746
Publisher: Springer Singapore Publication: April 6, 2019
Imprint: Springer Language: English
Author: Arindam Chaudhuri
ISBN: 9789811374746
Publisher: Springer Singapore
Publication: April 6, 2019
Imprint: Springer
Language: English

This book presents the latest research on hierarchical deep learning for multi-modal sentiment analysis. Further, it analyses sentiments in Twitter blogs from both textual and visual content using hierarchical deep learning networks: hierarchical gated feedback recurrent neural networks (HGFRNNs). Several studies on deep learning have been conducted to date, but most of the current methods focus on either only textual content, or only visual content. In contrast, the proposed sentiment analysis model can be applied to any social blog dataset, making the book highly beneficial for postgraduate students and researchers in deep learning and sentiment analysis.

The mathematical abstraction of the sentiment analysis model is presented in a very lucid manner. The complete sentiments are analysed by combining text and visual prediction results. The book’s novelty lies in its development of innovative hierarchical recurrent neural networks for analysing sentiments; stacking of multiple recurrent layers by controlling the signal flow from upper recurrent layers to lower layers through a global gating unit; evaluation of HGFRNNs with different types of recurrent units; and adaptive assignment of HGFRNN layers to different timescales. Considering the need to leverage large-scale social multimedia content for sentiment analysis, both state-of-the-art visual and textual sentiment analysis techniques are used for joint visual-textual sentiment analysis. The proposed method yields promising results from Twitter datasets that include both texts and images, which support the theoretical hypothesis.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book presents the latest research on hierarchical deep learning for multi-modal sentiment analysis. Further, it analyses sentiments in Twitter blogs from both textual and visual content using hierarchical deep learning networks: hierarchical gated feedback recurrent neural networks (HGFRNNs). Several studies on deep learning have been conducted to date, but most of the current methods focus on either only textual content, or only visual content. In contrast, the proposed sentiment analysis model can be applied to any social blog dataset, making the book highly beneficial for postgraduate students and researchers in deep learning and sentiment analysis.

The mathematical abstraction of the sentiment analysis model is presented in a very lucid manner. The complete sentiments are analysed by combining text and visual prediction results. The book’s novelty lies in its development of innovative hierarchical recurrent neural networks for analysing sentiments; stacking of multiple recurrent layers by controlling the signal flow from upper recurrent layers to lower layers through a global gating unit; evaluation of HGFRNNs with different types of recurrent units; and adaptive assignment of HGFRNN layers to different timescales. Considering the need to leverage large-scale social multimedia content for sentiment analysis, both state-of-the-art visual and textual sentiment analysis techniques are used for joint visual-textual sentiment analysis. The proposed method yields promising results from Twitter datasets that include both texts and images, which support the theoretical hypothesis.

More books from Springer Singapore

Cover of the book Crossing Borders by Arindam Chaudhuri
Cover of the book Erdélyi–Kober Fractional Calculus by Arindam Chaudhuri
Cover of the book Engaging Families as Children's First Mathematics Educators by Arindam Chaudhuri
Cover of the book Nonverbal Delivery in Speaking Assessment by Arindam Chaudhuri
Cover of the book Confucianism and Modernization in East Asia by Arindam Chaudhuri
Cover of the book Mathematical Theory of Elasticity of Quasicrystals and Its Applications by Arindam Chaudhuri
Cover of the book German-Australian Encounters and Cultural Transfers by Arindam Chaudhuri
Cover of the book Plant Viruses: Evolution and Management by Arindam Chaudhuri
Cover of the book Refractive Indices of Solids by Arindam Chaudhuri
Cover of the book India-Pakistan Trade Normalisation by Arindam Chaudhuri
Cover of the book Transactions on Intelligent Welding Manufacturing by Arindam Chaudhuri
Cover of the book Private International Law by Arindam Chaudhuri
Cover of the book Brief Guidelines for Methods and Statistics in Medical Research by Arindam Chaudhuri
Cover of the book Teaching Chinese Language in Singapore by Arindam Chaudhuri
Cover of the book Combinatorial Optimization and Graph Algorithms by Arindam Chaudhuri
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy