Vitushkin’s Conjecture for Removable Sets

Nonfiction, Science & Nature, Mathematics, Mathematical Analysis
Cover of the book Vitushkin’s Conjecture for Removable Sets by James Dudziak, Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: James Dudziak ISBN: 9781441967091
Publisher: Springer New York Publication: February 3, 2011
Imprint: Springer Language: English
Author: James Dudziak
ISBN: 9781441967091
Publisher: Springer New York
Publication: February 3, 2011
Imprint: Springer
Language: English

Vitushkin's conjecture, a special case of Painlevé's problem, states that a compact subset of the complex plane with finite linear Hausdorff measure is removable for bounded analytic functions if and only if it intersects every rectifiable curve in a set of zero arclength measure. Chapters 1-5 of the book provide important background material on removability, analytic capacity, Hausdorff measure, arclength measure, and Garabedian duality that will appeal to many analysts with interests independent of Vitushkin's conjecture. The fourth chapter contains a proof of Denjoy's conjecture that employs Melnikov curvature. A brief postscript reports on a deep theorem of Tolsa and its relevance to going beyond Vitushkin's conjecture. This text can be used for a topics course or seminar in complex analysis. To understand it, the reader should have a firm grasp of basic real and complex analysis.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Vitushkin's conjecture, a special case of Painlevé's problem, states that a compact subset of the complex plane with finite linear Hausdorff measure is removable for bounded analytic functions if and only if it intersects every rectifiable curve in a set of zero arclength measure. Chapters 1-5 of the book provide important background material on removability, analytic capacity, Hausdorff measure, arclength measure, and Garabedian duality that will appeal to many analysts with interests independent of Vitushkin's conjecture. The fourth chapter contains a proof of Denjoy's conjecture that employs Melnikov curvature. A brief postscript reports on a deep theorem of Tolsa and its relevance to going beyond Vitushkin's conjecture. This text can be used for a topics course or seminar in complex analysis. To understand it, the reader should have a firm grasp of basic real and complex analysis.

More books from Springer New York

Cover of the book Microbes and Microbial Technology by James Dudziak
Cover of the book Reviews of Environmental Contamination and Toxicology by James Dudziak
Cover of the book Genetic Programming Theory and Practice XI by James Dudziak
Cover of the book The Physician as Manager by James Dudziak
Cover of the book Mechanics of Biological Systems and Materials, Volume 5 by James Dudziak
Cover of the book Integrative Functions in the Mammalian Auditory Pathway by James Dudziak
Cover of the book New Firm Creation in the United States by James Dudziak
Cover of the book Sensors by James Dudziak
Cover of the book 3D Integration for NoC-based SoC Architectures by James Dudziak
Cover of the book Behavioural Oncology by James Dudziak
Cover of the book Handbook of Neurocritical Care by James Dudziak
Cover of the book High Performance Memory Systems by James Dudziak
Cover of the book Signals and Transforms in Linear Systems Analysis by James Dudziak
Cover of the book Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites by James Dudziak
Cover of the book Urban Surveying and Mapping by James Dudziak
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy