Konvergenz von Krylov-Verfahren für Eigenwertprobleme

Nonfiction, Science & Nature, Mathematics, Applied
Cover of the book Konvergenz von Krylov-Verfahren für Eigenwertprobleme by Alexander Weiß, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Alexander Weiß ISBN: 9783638900836
Publisher: GRIN Verlag Publication: January 25, 2008
Imprint: GRIN Verlag Language: German
Author: Alexander Weiß
ISBN: 9783638900836
Publisher: GRIN Verlag
Publication: January 25, 2008
Imprint: GRIN Verlag
Language: German

Diplomarbeit aus dem Jahr 1998 im Fachbereich Mathematik - Angewandte Mathematik, Note: sehr gut, Eberhard-Karls-Universität Tübingen (Mathematische Fakultät), 9 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Eigenwerte von Matrizen zu berechnen ist ein Problem, das häufig in naturwissenschaftlich-technischen Anwendungen auftritt. In der Theorie kann man mit Hilfe von Eigenwerten unter anderem Aussagen über die Stabilität von dynamischen Systemen machen. Außerdem spielen sie in der Stochastik, z.B. bei Markov-Ketten (Übergangswahrscheinlichkeiten, Brownsche Bewegung), eine wichtige Rolle. Nun einige Beispiele aus praktischen Anwendungen: - in der Physik bei Schwingungsproblemen - in der Chemie bei Verbrennungsprozessen - in der Makroökonomie bei der Überprüfung von Marktstabilität - in der Biologie bei Populationsmodellen Die hierbei auftretenden Fragen bzw. Aufgaben sind z.B.: Wie berechnet man - alle Eigenwerte und/oder alle Eigenvektoren für eine kleine Matrix (bis 10^3*10^3)? - einen Eigenwert und/oder den zugehörigen Eigenvektor (betragsgrößter, -kleinster, mit größtem Realteil,...)? - einige wenige Eigenwerte und gegebenenfalls die zugehörigen Eigenvektoren? - einen Eigenvektor zu einem bekannten Eigenwert (Markov-Ketten) Bei kleinen Matrizen, das heißt Matrizen der Größenordnung bis etwa 10^3*10^3, können diese mittels Householder-Transformationen auf Hessenberg-Form bzw. im hermiteschen Fall auf Tridiagonal-Form zurückgeführt werden. Dann kann man z.B. mit der QR-Zerlegung die gewünschten Eigenwerte und/oder die zugehörigen Eigenvektoren berechnen. In dieser Arbeit sollen Matrizen in der Größenordnung 10^3*10^3 bis 10^6*10^6 betrachtet werden. Da die erwähnten Standard-Algorithmen einen zu hohen Rechen- und Speicheraufwand verursachen, versucht man mittels Projektionsverfahren dieses große Problem auf ein kleines zu reduzieren, um darauf die Standardtechniken wieder anwenden und somit einen Teil des Spektrums approximieren zu können. Diese Arbeit hat die 'Konvergenz von Krylov-Verfahren für Eigenwertprobleme' zum Thema.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Diplomarbeit aus dem Jahr 1998 im Fachbereich Mathematik - Angewandte Mathematik, Note: sehr gut, Eberhard-Karls-Universität Tübingen (Mathematische Fakultät), 9 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Eigenwerte von Matrizen zu berechnen ist ein Problem, das häufig in naturwissenschaftlich-technischen Anwendungen auftritt. In der Theorie kann man mit Hilfe von Eigenwerten unter anderem Aussagen über die Stabilität von dynamischen Systemen machen. Außerdem spielen sie in der Stochastik, z.B. bei Markov-Ketten (Übergangswahrscheinlichkeiten, Brownsche Bewegung), eine wichtige Rolle. Nun einige Beispiele aus praktischen Anwendungen: - in der Physik bei Schwingungsproblemen - in der Chemie bei Verbrennungsprozessen - in der Makroökonomie bei der Überprüfung von Marktstabilität - in der Biologie bei Populationsmodellen Die hierbei auftretenden Fragen bzw. Aufgaben sind z.B.: Wie berechnet man - alle Eigenwerte und/oder alle Eigenvektoren für eine kleine Matrix (bis 10^3*10^3)? - einen Eigenwert und/oder den zugehörigen Eigenvektor (betragsgrößter, -kleinster, mit größtem Realteil,...)? - einige wenige Eigenwerte und gegebenenfalls die zugehörigen Eigenvektoren? - einen Eigenvektor zu einem bekannten Eigenwert (Markov-Ketten) Bei kleinen Matrizen, das heißt Matrizen der Größenordnung bis etwa 10^3*10^3, können diese mittels Householder-Transformationen auf Hessenberg-Form bzw. im hermiteschen Fall auf Tridiagonal-Form zurückgeführt werden. Dann kann man z.B. mit der QR-Zerlegung die gewünschten Eigenwerte und/oder die zugehörigen Eigenvektoren berechnen. In dieser Arbeit sollen Matrizen in der Größenordnung 10^3*10^3 bis 10^6*10^6 betrachtet werden. Da die erwähnten Standard-Algorithmen einen zu hohen Rechen- und Speicheraufwand verursachen, versucht man mittels Projektionsverfahren dieses große Problem auf ein kleines zu reduzieren, um darauf die Standardtechniken wieder anwenden und somit einen Teil des Spektrums approximieren zu können. Diese Arbeit hat die 'Konvergenz von Krylov-Verfahren für Eigenwertprobleme' zum Thema.

More books from GRIN Verlag

Cover of the book Identität und Körperinszenierung bei Jugendlichen als zentrales Analysefeld der Sozialen Arbeit by Alexander Weiß
Cover of the book Vivienne Westwood by Alexander Weiß
Cover of the book Qualitätsmanagement und Total Quality Management im Krankenhaus by Alexander Weiß
Cover of the book Misserfolg in der Schule. Ursachen für das Nichterreichen von Lern- und Leistungszielen bei Schülern in der Primarstufe by Alexander Weiß
Cover of the book Sozialstruktur und Bildungssystem by Alexander Weiß
Cover of the book Einstellung zu zentralen Testuntersuchungen an Schulen und deren Nutzen für die Schulentwicklung by Alexander Weiß
Cover of the book The Stanford Prison Experiment by Alexander Weiß
Cover of the book Integration eines webbasierten Informations-Systems mit einem Hotline-Tool und einer Installationsdatenbank by Alexander Weiß
Cover of the book Der Aufstieg des Gaius Julius Caesar bis zum ersten Triumvirat by Alexander Weiß
Cover of the book Kindheit im Wandel. Veränderte Bedingungen des Aufwachsens in jüngerer Zeit by Alexander Weiß
Cover of the book Taktische Angriffsmaßnahmen im Handball by Alexander Weiß
Cover of the book Lese- und Rechtschreibschwäche in der Sekundarstufe by Alexander Weiß
Cover of the book Die demokratische Entwicklung in der Adenauer-Ära by Alexander Weiß
Cover of the book Skulpturverfahren in der familientherapeutischen Arbeit by Alexander Weiß
Cover of the book Die englische Revolution und der Protestantismus by Alexander Weiß
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy