Georg Cantor - Grundlagen einer allgemeinen Mannigfaltigkeitslehre

Nonfiction, Science & Nature, Mathematics
Cover of the book Georg Cantor - Grundlagen einer allgemeinen Mannigfaltigkeitslehre by Daniel Burckhardt, GRIN Verlag
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Daniel Burckhardt ISBN: 9783638090018
Publisher: GRIN Verlag Publication: May 12, 2000
Imprint: GRIN Verlag Language: German
Author: Daniel Burckhardt
ISBN: 9783638090018
Publisher: GRIN Verlag
Publication: May 12, 2000
Imprint: GRIN Verlag
Language: German
Studienarbeit aus dem Jahr 1998 im Fachbereich Mathematik - Sonstiges, Technische Universität Berlin, Veranstaltung: Proseminar von Kant bis Hilbert: Grundlagentexte der Mathematik, Sprache: Deutsch, Abstract: Georg Cantors 'Grundlagen einer allgemeinen Mannigfaltigkeitslehre' bilden den fünften Teil einer Serie von sechs Artikeln, die unter dem gemeinsamen Titel 'Über unendliche lineare Punktmannigfaltigkeiten' zwischen 1879 und 1884 in den Mathematischen Annalen abgedruckt wurden. Innerhalb dieser Serie gebührt den 'Grundlagen' eine besondere Stellung: Sie sind als geschlossene Darstellung derjenigen Ergebnisse konzipiert, die den Kern der zwischen 1871 und 1884 geschaffenen Cantorschen Mengenlehre bilden. 1883, also noch vor ihrer Publikation in den Annalen, wurden sie - um den Untertitel 'Ein mathematisch-philosophischer Versuch in die Lehre des Unendlichen' und ein Vorwort erweitert - als Separatdruck bei Teubner herausgegeben. Dazu Cantor (im in der Gesamtausgabe seiner Werke nicht abgedruckten Vorwort): 'Since the present essay carries the subject much further, and since its main thesis is independent of the earlier articles, I decided to publish it separately under a title that corresponds more closely to its contents.' Ausdrücklich wendet er sich dabei an ein doppeltes Publikum, den mit den aktuellen mathematischen Entwicklungen vertrauten Philosophen, sowie den philosophisch vorgebildeten Mathematiker. Der erste Abschnitt liefert einige Angaben über die bewegte Biographie von Georg Cantor. Im Anschluss daran betrachte ich den Gang der Arbeiten, die den jungen Privatdozenten zu den ersten Arbeiten über die Mengenlehre führt. Abschnitt 4 konzentriert sich auf die 'Grundlagen'. Sie dienen mir als Ausgangspunkt zur Untersuchung wichtiger Punkte in Cantors Werk: Mengenlehre, die Grundlegung der reellen Zahlen, transfinite Grössen sowie philosophische Betrachtungen der Mathematik.
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Studienarbeit aus dem Jahr 1998 im Fachbereich Mathematik - Sonstiges, Technische Universität Berlin, Veranstaltung: Proseminar von Kant bis Hilbert: Grundlagentexte der Mathematik, Sprache: Deutsch, Abstract: Georg Cantors 'Grundlagen einer allgemeinen Mannigfaltigkeitslehre' bilden den fünften Teil einer Serie von sechs Artikeln, die unter dem gemeinsamen Titel 'Über unendliche lineare Punktmannigfaltigkeiten' zwischen 1879 und 1884 in den Mathematischen Annalen abgedruckt wurden. Innerhalb dieser Serie gebührt den 'Grundlagen' eine besondere Stellung: Sie sind als geschlossene Darstellung derjenigen Ergebnisse konzipiert, die den Kern der zwischen 1871 und 1884 geschaffenen Cantorschen Mengenlehre bilden. 1883, also noch vor ihrer Publikation in den Annalen, wurden sie - um den Untertitel 'Ein mathematisch-philosophischer Versuch in die Lehre des Unendlichen' und ein Vorwort erweitert - als Separatdruck bei Teubner herausgegeben. Dazu Cantor (im in der Gesamtausgabe seiner Werke nicht abgedruckten Vorwort): 'Since the present essay carries the subject much further, and since its main thesis is independent of the earlier articles, I decided to publish it separately under a title that corresponds more closely to its contents.' Ausdrücklich wendet er sich dabei an ein doppeltes Publikum, den mit den aktuellen mathematischen Entwicklungen vertrauten Philosophen, sowie den philosophisch vorgebildeten Mathematiker. Der erste Abschnitt liefert einige Angaben über die bewegte Biographie von Georg Cantor. Im Anschluss daran betrachte ich den Gang der Arbeiten, die den jungen Privatdozenten zu den ersten Arbeiten über die Mengenlehre führt. Abschnitt 4 konzentriert sich auf die 'Grundlagen'. Sie dienen mir als Ausgangspunkt zur Untersuchung wichtiger Punkte in Cantors Werk: Mengenlehre, die Grundlegung der reellen Zahlen, transfinite Grössen sowie philosophische Betrachtungen der Mathematik.

More books from GRIN Verlag

Cover of the book Die Verheissung an Petrus (Primatswort) in Mt 16,17-19. Exegese der Überlieferung von Matthäus by Daniel Burckhardt
Cover of the book The United States and the Congo Crisis, 1960 - 1961 by Daniel Burckhardt
Cover of the book Unterrichtsstunde Wahrscheinlichkeit: Würfeln mit zwei Würfeln by Daniel Burckhardt
Cover of the book Case Study: Regulation of Electric Power in Germany by Daniel Burckhardt
Cover of the book Ablauf eines Initial Public Offering an einer deutschen Börse und die Rolle des Abschlussprüfers by Daniel Burckhardt
Cover of the book Die Angst der amerikanischen Gesellschaft vor dem Kommunismus in den 50er Jahren by Daniel Burckhardt
Cover of the book Body in Islam - A Source of Sin and Shame? by Daniel Burckhardt
Cover of the book Prosoziales Verhalten und Altruismus by Daniel Burckhardt
Cover of the book Außeruniversitäre 'staatliche' Forschungseinrichtungen als Teil des öffentlichen Dienstes? by Daniel Burckhardt
Cover of the book atmosfair - Ein Social Enterprise Beispiel im Klimaschutz by Daniel Burckhardt
Cover of the book Familienzentrum NRW - Darstellung und kritische Würdigung des Gütesiegels by Daniel Burckhardt
Cover of the book Risikomanagement in KMU by Daniel Burckhardt
Cover of the book Zeichenfelder: Kleidung und Mode by Daniel Burckhardt
Cover of the book 'Wir lernen unseren Vogel kennen.' Lesekonferenz kombiniert mit sachunterrichtlichem Wissen by Daniel Burckhardt
Cover of the book Soziale Qualität der verschiedenen Sozialstaatskonzeptionen und die Zukunft des deutschen Sozialstaats by Daniel Burckhardt
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy